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Perchloroethylene (PCE) is an abundant pollutant that ranks
high on the priority list of the US Environmental Protection
Agency. PCE causes liver and kidney tumors in animal studies,1

and has been classified as a probable human carcinogen. Vitamin
B12 is a promising catalyst for the decontamination of polluted
environments via a reductive dechlorination process.2 At present,
the mechanistic details of this transformation are unclear. We
report here studies that provide support for an electron-transfer
mechanism.

PCE has a long environmental half-life,3 due in part to slow
oxidative breakdown under aerobic conditions. Several strains of
anaerobic microbesreductiVely dechlorinate PCE to trichloro-
ethylene (TCE), and subsequently tocis-1,2-dichloroethylene
(DCE) (eq 1).4 The enzymes involved utilize a vitamin B12

derivative,5 a novel and unprecedented role for this versatile
cofactor. Interestingly, an earlier report by Gantzer and Wackett
indicated that vitamin B12 can catalyze the reaction in eq 1 in the
absence of enzymes.2a This finding has spurred studies on the
feasibility of using B12 as a remediation catalyst.2b-f

The extensive literature on vitamin B12 provides a basis for
the formulation of at least three possible mechanisms for the
dechlorination of PCE as shown in Scheme 1. Only strong
reductants such as Ti(III) citrate support catalytic turnover,
implying that Co(I) is the active form of the catalyst.6 Cob(I)-
alamins are well-known for their high nucleophilicity (Pearson
constant of 147) suggesting a nucleophilic attack of the catalyst
on the electron-deficient olefin.8 At least two different pathways
can provide the observed product from intermediate1 (corrin
ligand not shown). Electrofugal Co-C bond cleavage (pathway

A), possibly assisted by an external nucleophile, has precedent
in organocobalamins with good leaving groups in theâ-position.9

An alternative addition-elimination route (pathway B) would lead
to intermediate2. In fact, Lesage and co-workers2f have detected
mono- and dichlorinated vinylcobalamins in dechlorination reac-
tions by mass spectrometry. The authors proposed a homolytic
cleavage of the Co-C bond of 2 leading to Co(II) and a
trichlorovinyl radical3. This same species has been suggested as
an intermediate in a nonnucleophilic mechanism involving a one-
electron transfer from the reduced corrinoid to PCE (pathway C).2c

This trichlorovinyl radical could be reduced and protonated, or
could abstract a hydrogen atom from a suitable donor. We have
employed radical traps, labeling studies, and stopped-flow
spectroscopy to distinguish between these mechanisms. Our results
are taken to support pathway C.

Intramolecular radical traps have been used extensively to probe
for the possible intermediacy of free radicals in chemical
reactions.10 Phenyl-substituted cyclopropanes have recently been
reported as probes for ketyl radical anions, and ring opening with
rate constants of 105 s-1 was observed.11 Vinyl radicals are known
to cyclize readily with appropriately positioned alkenyl12 or aryl13

groups. On the basis of these considerations, compounds4-6
were designed to probe the involvement of radical anions14 and/
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or vinyl radicals. The probes were reacted with catalytic vitamin
B12 in the presence of excess Ti(III) citrate as reducing agent.
cis-Cyclopropane4 yielded7 as the major product along with a
small amount of reduction product8.15 The trans isomer5 on the
other hand provided only reduced materials. In both reactions a
small amount of allene (2-3%) was detected,16 that may have
arisen from ring opening of a radical anion or a vinyl radical
formed at carbon 2.17 B12-catalyzed dechlorination of6 provided
a mixture of ring-closed and reduced products. Cyclization
occurred exclusively in 6-(π-endo)exo fashion18 and no conjugated
products were observed.19 Collectively, these experiments provide
support for radical intermediates consistent with mechanisms B
and C.20

The generation of reduced products8-11 prompted us to
investigate the source of the vinyl hydrogen. These products may
be formed by reduction of the radicals to their respective anions

followed by protonation or by hydrogen atom abstraction from a
suitable donor. Two complementary experiments were carried out
in which Ti(III) citrate and vitamin B12 were reacted with5 in a
1:1 mixture of either H2O and (CH3)2CDOH or D2O and (CH3)2-
CHOD. A significant fraction of the products resulted from
deuterium atom (eq 2) or hydrogen atom (eq 3) transfer from C2
of 2-propanol, a good hydrogen atom donor.21 The higher
percentage of hydrogen atom transfer from 2-propanol (eq 3)
compared to deuterium atom transfer from 2-d1-i-PrOH (eq 2)
likely reflects a primary kinetic isotope effect on the abstraction
step.22

We next turned our attention to the catalyst itself. The oxidation
state of the metal in mechanisms A-C varies, providing an avenue
for differentiation using UV-visible spectroscopy. Vitamin B12

was prereduced with 7 equiv of Ti(III) citrate in a 1:9 solution of
EtOH and 50 mM Tris buffer, pH 8.0. A solution of the reduced
cobalamin (CoI) was mixed in a stopped-flow system with PCE
at 25°C. The CoI absorbance at 390 nm disappeared concomitant
with the emergence of a band with aλmax at 475 nm corresponding
to CoII (Figure 1).23 Two isosbestic points at 418 and 543 nm
suggest CoI transfers an electron to PCE to form CoII without the
formation of an intermediate.24 No evidence could be found for
Co(III) intermediates such as a trichloroethenyl cobalamin2.25

In summary, this work supports a one-electron transfer from
cob(I)alamin to PCE as the first step in the catalytic dechlorination
of this ubiquitous pollutant. A detailed kinetic investigation of
the electron transfer step is currently in progress.
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Figure 1. Stopped-flow rapid scanning spectra taken 0.16, 19, 39, and
58 s after mixing Co(I) with PCE; final concentrations were 10µM and
1 mM, respectively. The inset shows Co(II) formation.26
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